
Efficient Point-to-Point Shortest
Path Algorithms

Andrew V. Goldberg (Microsoft Research)

Chris Harrelson (Google)

Haim Kaplan (Tel Aviv University)

Renato F. Werneck (Princeton University)

Shortest Paths

• Point-to-point shortest path problem (P2P):

– Given:

∗ directed graph with nonnegative arc lengths �(v, w);

∗ source vertex s;

∗ target vertex t.

– Goal: find shortest path from s to t.

• Our study:

– Large road networks:

∗ 330K (Bay Area) to 30M (North America) vertices.

– Algorithms work in two stages:

∗ preprocessing: may take hours, outputs linear amount of data;

∗ query: should take milliseconds, uses the preprocessed data.

2

Example Graph

Northwest

n = 1.6M vertices

m = 3.8M arcs

3

Obvious Algorithm

• Precompute all shortest paths and store distance matrix.

• Will not work on large graphs (n = 30M).

– O(n2) space: ∼26 PB.

– Õ(nm) time: years (single Dijkstra takes ∼10s).

(All times on a 2.4 GHz AMD Opteron with 16 GB of RAM.)

4



Dijkstra’s Algorithm

• Vertices processed in increasing order of distance:

– maintains a distance label d(v) for each vertex:

∗ upper bound on dist(s, v);

∗ initially, d(s) = 0 and d(v) =∞ for all other vertices.

– In each iteration:

∗ Pick unscanned vertex v with smallest d(·) (use heap).

∗ Scan v:

· For each edge (v, w), check if d(w) > d(v) + �(v, w).

· If it is, set d(w)← d(v) + �(v, w).

– Stop when the target t is about to be scanned.

– [Dijkstra’59, Dantzig’63].

• Intuition:

– grow a ball around s and stop when t is scanned.

5

Dijkstra’s Algorithm

6

Bidirectional Dijkstra’s Algorithm

• Bidirectional Dijkstra’s algorithm:

– forward search from s with labels df :

∗ performed on the original graph.

– reverse search from t with labels dr:

∗ performed on the reverse graph;

∗ same set of vertices, each arc (v, w) becomes (w, v).

– alternate in any way.

• Intuition: grow a ball around each end (s and t) until they “meet”.

7

Bidirectional Dijkstra’s Algorithm

8



Bidirectional Dijkstra’s Algorithm

• Possible stopping criterion:

– a vertex v is about to be scanned a second time:

∗ once in each direction;

– v may not be on the shortest path.

• We must maintain the length µ of the best path seen so far:

– initially, µ =∞;

– when scanning an arc (v, w) in the forward search and w is scanned in

the reverse search, update µ if df (v) + �(v, w) + dr(w) < µ.

– similar procedure if scanning an arc in the reverse search.

9

Bidirectional Dijkstra’s Algorithm

• Stronger stopping condition:

– Let topf and topr be the top heap values (forward and reverse).

– Stop when topf + topr ≥ µ.

– Previous stopping criterion is a special case.

• Why does it work?

– Suppose there exists an s-t path P with length less than µ.

– There must be an arc (v, w) on this path such that:

∗ dist(s, v) < topf and

∗ dist(w, t) < topr.

– Both v and w have been scanned already.

– When the second of these was scanned, it would have found the P .

∗ Contradiction: P cannot exist.

10

Part I: A∗ Search

11

A∗ Search

• Define potential function π(v) and modify lengths:

– �π(v, w) = �(v, w)− π(v) + π(w)

– �π(v, w): reduced cost of arc (v, w).

• All s-t paths change by same amount: π(t)− π(s).

• A∗ search:

– Equivalent to Dijkstra on the modified graph:

∗ correct if �π(v, w) ≥ 0 (π feasible).

– Vertices scanned in increasing order of k(v) = d(v) + π(v):

∗ π(v): estimate on dist(v, t);

∗ k(v): estimated length of shortest s-t path through v.

– If π(t) = 0 and π feasible, π(v) is a lower bound on dist(v, t).

• All we need are good feasible lower bounds (e.g., Euclidean).

12



A∗ Search

• Why is A∗ equivalent to Dijkstra on the modified graph?

– Dijkstra picks vertices with increasing (modified) distance from s:

∗ distπ(s, v) = dist(s, v)− π(s) + π(v)

– A∗ search picks vertices with increasing key:

∗ k(v) = dist(s, v) + π(v)

– π(s) is constant: these orders are the same.

• Why is π(v) a lower bound on dist(v, t) when π is feasible and π(t) = 0?

– Take the shortest path from v to t.

– Two ways of computing its reduced cost:

1. dist(v, t)− π(v) + π(t) = dist(v, t)− π(v) (since π(t) = 0);

2. sum of the reduced costs of all arcs:

∗ must be nonnegative, since π is feasible.

– Combining them: dist(v, t)− π(v) ≥ 0⇒ π(v) ≤ dist(v, t).

13

Bidirectional A∗ Search

• Bidirectional search needs two potential functions:

– πf (v): estimate on dist(v, t).

– πr(v): estimate on dist(s, v).

• Reduced cost of arc (v, w):

– Forward: �f (v, w) = �(v, w)− πf (v) + πf (w).

– Reverse: �r(w, v) = �(v, w)− πr(w) + πr(v).

∗ the arc appears as (w, v) in the reverse graph.

• These values must be consistent:

�f (v, w) = �r(w, v)

�(v, w)− πf (v) + πf (w) = �(v, w)− πr(w) + πr(v)

πf (w) + πr(w) = πf (v) + πr(v)

• This must be true for all pairs (v, w), i.e., (πf + πr) = constant.

14

Bidirectional A∗ Search

• Must use consistent potential functions.

• In general, two arbitrary feasible functions πf and πr are not consistent.

• Their average is both feasible and consistent [Ikeda et al. 94]:

– pf (v) = 1
2 (πf (v)− πr(v))

– pr(v) = 1
2 (πr(v)− πf (v)) = −pf (v)

• To make the algorithm more intuitive, we make:

– pf (v) = 1
2 (πf (v)− πr(v)) + πr(t)

2

– pr(v) = 1
2 (πr(v)− πf (v)) +

πf (s)
2

– Added terms are constant: functions still feasible and consistent.

– When πf and πr are lower bounds, pf (t) = 0 and pr(s) = 0.

• p usually provides worse bounds than π:

– still worth it in practice.

15

Bidirectional A∗ Search

• Standard bidirectional Dijkstra:

– stop when topf + topr ≥ µ.

∗ topf : length of the path from s to top element of forward heap.

∗ topr: length of (reverse) path from t to top element of reverse heap.

∗ µ: best s-t path seen so far.

• Bidirectional A∗ search: same, but on the modified graph:

– Let vf and vr be the top elements in each heap;

– Length of path s-vf is df (vf ) + pf (vf )− pf (s) = topf − pf (s).

– Length of reverse path t-vr is dr(vr) + pr(vr)− pr(t) = topr − pr(t).

– Stopping criterion:

[topf − pf (s)] + [topr − pr(t)] ≥ [µ− pf (s) + pf (t)]

– Simplifying and using pf (t) = 0:

topf + topr ≥ µ + pr(t).

16



Lower Bounds

• Preprocessing:

– select a constant number of landmarks (we use 16);

– for each landmark, precompute distance to and from every vertex.

•

wv

A

wv

A

Lower bounds use the triangle inequality:

dist(v, w) ≥ dist(A,w)− dist(A, v)

dist(v, w) ≥ dist(v,A)− dist(w,A)

dist(v, w) ≥ max{dist(A,w)− dist(A, v), dist(v,A)− dist(w,A)}

• A good landmark appears “before” v or “after” w.

• More than one landmark: pick maximum (still feasible).

17

Query with Landmarks

18

Experimental Results

• Northwest (1 649 045 vertices), 1000 random pairs:

PREPROCESSING QUERY

METHOD minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518 723 1 197 607 340.74

Landmarks 4 132 16 276 150 389 12.05

• Vertices scanned: ∼1% on average, ∼10% on bad cases.

19

Landmark Selection

• Landmark selection happens in two stages.

• Preprocessing:

– Pick a small number of landmarks (we use 16).

∗ more landmarks: better queries, more space.

– Store on disk distances to and from each landmark.

• Query (s and t known):

– using all available landmarks is expensive;

– pick a small subset (2 to 6) that is good for the search.

20



Landmark Selection during Preprocessing

• Ultimate goal:

– There should be a landmark “behind” every s-t pair.

– Graphs are big, cannot evaluate this exactly: use heuristics.

∗ All methods are quasi-linear.

• Algorithms:

– Simple methods: random, farthest, planar;

– avoid: adds landmarks “behind” regions not currently covered;

– maxcover: avoid + local search:

∗ goal: maximize #arcs with zero reduced cost.

• Best in practice is maxcover:

– queries ∼3 times as fast as random;

– preprocessing ∼15 times slower.

21

Landmark Selection at Query Time

• Use only an active subset:

– prefer landmarks that give the best lower bound on dist(s, t).

• We use dynamic selection:

– start with two landmarks (best forward + best reverse);

– periodically check if a new landmark would help;

– heaps rebuilt when landmarks added.

• Performance in practice:

– picks only ∼3 landmarks;

– fewer nodes visited than with any fixed number of landmarks.

22

Part II: Reach

23

Reaches

•

v ts

Let v be a vertex on the shortest path P between s and t.

• Reach of v with respect to P :

reach(v, P ) = min{dist(s, v), dist(t, v)}

• Reach of v with respect to the whole graph:

reach(v) = maxP {reach(v, P )},

over all shortest paths P that contain v [Gutman’04].

• Intuition:

– vertices on highways have high reach;

– vertices on local roads have low reach.

24



Using Reaches

•

LB(w,t)
d(s,v) wv

ts

Reaches can be used to prune the search during an s-t query.

• While scanning an edge (v, w):

– If reach(w) < min{d(s, v) + �(v, w), LB(w, t)}, then w can be pruned.

• How do we obtain lower bounds?

– Explicitly: Euclidean distances (Gutman’s suggestion), landmarks.

– Implicitly: make the search bidirectional.

25

Implicit Bounds: Bidirectional Search

•

Rt

LB(w,t)
d(s,v) wv

ts

Let Rt be the radius of the reverse search:

– Rt is the value of the top element in the reverse heap;

– if w not labeled in the reverse direction, then d(w, t) ≥ Rt.

• Pruning test: reach(w) < min{d(s, v) + �(v, w), Rt}

– for best results, balance the forward and reverse searches by radius.

26

Queries with Reaches

27

Experimental Results

• Northwest (1 649 045 vertices), 1000 random pairs:

PREPROCESSING QUERY

METHOD minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518 723 1 197 607 340.74

Landmarks 4 132 16 276 150 389 12.05

Reaches 1100 34 53 888 106 288 30.61

28



Computing Reaches

• Trivial algorithm:

– compute every s-t path;

– determine reach of each vertex on each path.

• Implementation:

– Build shortest path tree Tr from each vertex r;

– Determine reach of each vertex v within the tree:

reach(v, Tr) = min{depth(v), height(v)}

– Take maximum over all r.

• Runs in Õ(nm) time:

– overnight on Bay Area, years on North America.

29

Computing Reaches

• Query still correct with upper bounds on reaches.

• We use iterative algorithm:

1. find vertices with reach at most ε;

– look only at partial shortest path trees (depth ∼ 2ε).

2. eliminate vertices with small reach;

– if no vertices remain, stop;

– otherwise, increase ε and start another iteration.

• Use penalties to account for vertices already eliminated:

– reaches no longer exact, but valid upper bounds

• Works well if many vertices are eliminated between iterations.

30

Shortcuts

•

10001000

1010101010101010
ts

Consider a sequence of vertices of degree two on the path below:

31

Shortcuts

•

10001000

1010101010101010
100010101020103010401030102010101000 ts

Consider a sequence of vertices of degree two on the path below:

– they all have high reach;

32



Shortcuts

•

10001000

1010101010101010

80

ts

Consider a sequence of vertices of degree two on the path below:

– they all have high reach.

• Add a shortcut:

– single edge bypassing a path (with same length).

– assume ties are broken by taking path with fewer nodes.

33

Shortcuts

•

1000605040304050601000 ts

Consider a sequence of vertices of degree two on the path below:

– they all have high reach.

• Add a shortcut:

– single edge bypassing a path (with same length).

– assume ties are broken by taking path with fewer nodes.

34

Shortcuts

•

1000201020302010201000 ts

Consider a sequence of vertices of degree two on the path below:

– they all have high reach.

• Add a shortcut:

– single edge bypassing a path (with same length).

– assume ties are broken by taking path with fewer nodes.

• More shortcuts can be added recursively.

35

Shortcuts

•

100001003001001000 ts

Consider a sequence of vertices of degree two on the path below:

– they all have high reach.

• Add a shortcut:

– single edge bypassing a path (with same length).

– assume ties are broken by taking path with fewer nodes.

• More shortcuts can be added recursively.

36



Shortcuts

• Adding shortcuts during preprocessing:

– speeds up queries (pruning more effective);

– speeds up preprocessing (graph shrinks faster);

– requires slightly more space (graph has more arcs).

• Shortcuts bypass vertices of degree two:

– some have degree two in the original graph;

– some acquire degree two as other vertices are eliminated.

• Sanders and Schultes [ESA’05]:

– similar idea for hierarchy-based algorithm.

37

Reaches with Shortcuts

38

Experimental Results

• Northwest (1 649 045 vertices), 1000 random pairs:

PREPROCESSING QUERY

METHOD minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518 723 1 197 607 340.74

Landmarks 4 132 16 276 150 389 12.05

Reaches 1100 34 53 888 106 288 30.61

Reaches+Shortcuts 17 100 2 804 5 877 2.39

39

Reaches and Landmarks

• A∗ search with landmarks can use reaches:

– A∗ gives the search a sense of direction.

– Reaches make the search sparser.

• Landmarks have dual purpose:

1. guide the search;

2. provide lower bounds for reach-based pruning.

40



Reaches and Landmarks (with Shortcuts)

41

Experimental Results

• Northwest (1 649 045 vertices), 1000 random pairs:

PREPROCESSING QUERY

METHOD minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518 723 1 197 607 340.74

Landmarks 4 132 16 276 150 389 12.05

Reaches 1100 34 53 888 106 288 30.61

Reaches+Shortcuts 17 100 2 804 5 877 2.39

Reaches+Shortcuts+Landmarks 21 204 367 1 513 0.73

42

Summary of Results

• North America (29 883 886 vertices), 1000 random pairs:

PREPROCESS QUERY

METHOD hours GB avgscan maxscan ms

Bidirectional Dijkstra — 0.5 10 255 356 27 166 866 7 633.9

Landmarks 1.6 2.3 250 381 3 584 377 393.4

Reaches+Shortcuts 11.3 1.8 14 684 24 618 17.4

Reaches+Shortcuts+Landmarks 12.9 3.6 1 595 7 450 3.7

43

Future Directions

• Theory:

– For which classes of graphs does each algorithm work?

– How to find a good set of landmarks?

– What is the best set of shortcuts for a given graph?

– Is there a faster algorithm for computing exact reaches?

– Is there a better algorithm for computing approximate reaches?

• Practice:

– Reduce size of preprocessed data.

– Make queries more cache-efficient.

44



References

• Goldberg, Harrelson, and Werneck (in preparation):

– Goldberg and Harrelson (SODA’05):

∗ “ALT algorithm” (A∗ search + Landmarks + Triangle inequality).

– Goldberg and Werneck (Alenex’05):

∗ improved preprocessing and queries;

∗ Pocket PC implementation.

• Goldberg, Kaplan, and Werneck (2005):

– reach with shortcuts + A∗ search.

http://www.cs.princeton.edu/~rwerneck/public.htm

45


