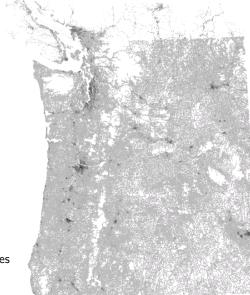
Efficient Point-to-Point Shortest Path Algorithms

Andrew V. Goldberg (Microsoft Research) Chris Harrelson (Google) Haim Kaplan (Tel Aviv University) Renato F. Werneck (Princeton University)

Example Graph



3

Northwest n = 1.6 M vertices m = 3.8 M arcs

Shortest Paths

- Point-to-point shortest path problem (P2P):
 - Given:
 - * directed graph with nonnegative arc lengths $\ell(v, w)$;
 - * source vertex s;
 - * target vertex t.
 - Goal: find shortest path from s to t.
- Our study:
 - Large road networks:
 - * 330K (Bay Area) to 30M (North America) vertices.
 - Algorithms work in two stages:
 - * preprocessing: may take hours, outputs linear amount of data;
 - * query: should take milliseconds, uses the preprocessed data.
 - $\mathbf{2}$

Obvious Algorithm

- Precompute all shortest paths and store distance matrix.
- Will not work on large graphs (n = 30M).
 - $O(n^2)$ space: ~26 PB.
 - $\tilde{O}(nm)$ time: years (single Dijkstra takes ~10s).

(All times on a 2.4 GHz AMD Opteron with 16 GB of RAM.)

Dijkstra's Algorithm

- Vertices processed in increasing order of distance:
 - maintains a distance label d(v) for each vertex:
 - * upper bound on dist(s, v);
 - $\ast\,$ initially, d(s)=0 and $d(v)=\infty$ for all other vertices.
 - In each iteration:
 - $\ast\,$ Pick unscanned vertex v with smallest $d(\cdot)$ (use heap).
 - * Scan v:
 - · For each edge (v, w), check if $d(w) > d(v) + \ell(v, w)$.
 - · If it is, set $d(w) \leftarrow d(v) + \ell(v, w)$.
 - Stop when the target t is about to be scanned.
 - [Dijkstra'59, Dantzig'63].
- Intuition:
 - $-\,$ grow a ball around s and stop when t is scanned.

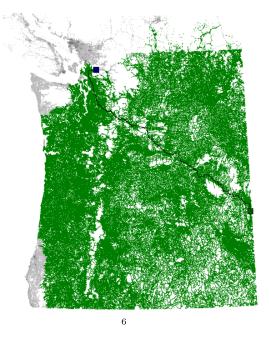
5

Bidirectional Dijkstra's Algorithm

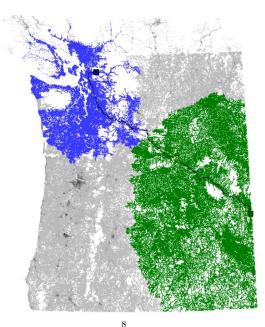
- Bidirectional Dijkstra's algorithm:
 - forward search from s with labels d_f :
 - * performed on the original graph.
 - reverse search from t with labels d_r :
 - * performed on the reverse graph;
 - \ast same set of vertices, each arc (v, w) becomes (w, v).
 - alternate in any way.

• Intuition: grow a ball around each end (s and t) until they "meet".

Dijkstra's Algorithm



Bidirectional Dijkstra's Algorithm



Bidirectional Dijkstra's Algorithm

- Possible stopping criterion:
 - a vertex v is about to be scanned a second time:
 - * once in each direction;
 - -v may not be on the shortest path.
- We must maintain the length μ of the best path seen so far:
 - initially, $\mu = \infty$;
 - when scanning an arc (v, w) in the forward search and w is scanned in the reverse search, update μ if $d_f(v) + \ell(v, w) + d_r(w) < \mu$.

9

- similar procedure if scanning an arc in the reverse search.

Bidirectional Dijkstra's Algorithm

- Stronger stopping condition:
 - Let top_f and top_r be the top heap values (forward and reverse).
 - Stop when $top_f + top_r \ge \mu$.
 - Previous stopping criterion is a special case.
- Why does it work?
 - Suppose there exists an s-t path P with length less than μ .
 - There must be an arc (v, w) on this path such that:
 - $* \operatorname{dist}(s, v) < \operatorname{top}_{f}$ and
 - * $\operatorname{dist}(w,t) < \operatorname{top}_r$.
 - Both v and w have been scanned already.
 - When the second of these was scanned, it would have found the P. \ast Contradiction: P cannot exist.
 - 10

A* Search

- Define potential function $\pi(v)$ and modify lengths:
 - $-\ell_{\pi}(v,w) = \ell(v,w) \pi(v) + \pi(w)$
 - $-\ell_{\pi}(v,w)$: reduced cost of arc (v,w).
- All *s*-*t* paths change by same amount: $\pi(t) \pi(s)$.
- A* search:
 - Equivalent to Dijkstra on the modified graph: * correct if $\ell_{\pi}(v, w) \ge 0$ (π feasible).
 - Vertices scanned in increasing order of $k(v) = d(v) + \pi(v)$:
 - * $\pi(v)$: estimate on dist(v, t);
 - * k(v): estimated length of shortest *s*-*t* path through *v*.
 - If $\pi(t) = 0$ and π feasible, $\pi(v)$ is a lower bound on dist(v, t).
- All we need are good feasible lower bounds (e.g., Euclidean).

Part I: A* Search

A* Search

- Why is A* equivalent to Dijkstra on the modified graph?
 - Dijkstra picks vertices with increasing (modified) distance from s:
 - * dist_{π}(s, v) = dist(s, v) π (s) + π (v)
 - A^* search picks vertices with increasing key:
 - * $k(v) = \operatorname{dist}(s, v) + \pi(v)$
 - $-\pi(s)$ is constant: these orders are the same.
- Why is $\pi(v)$ a lower bound on dist(v, t) when π is feasible and $\pi(t) = 0$?
 - Take the shortest path from v to t.
 - Two ways of computing its reduced cost:
 - 1. $dist(v,t) \pi(v) + \pi(t) = dist(v,t) \pi(v)$ (since $\pi(t) = 0$);
 - 2. sum of the reduced costs of all arcs:
 - $\ast\,$ must be nonnegative, since π is feasible.
 - Combining them: $\operatorname{dist}(v,t) \pi(v) \ge 0 \Rightarrow \pi(v) \le \operatorname{dist}(v,t).$
 - 13

Bidirectional A* Search

- Must use consistent potential functions.
- In general, two arbitrary feasible functions π_f and π_r are not consistent.
- Their average is both feasible and consistent [Ikeda et al. 94]:

$$-p_f(v) = \frac{1}{2}(\pi_f(v) - \pi_r(v))$$

$$-p_r(v) = \frac{1}{2}(\pi_r(v) - \pi_f(v)) = -p_f(v)$$

- To make the algorithm more intuitive, we make:
 - $-p_f(v) = \frac{1}{2}(\pi_f(v) \pi_r(v)) + \frac{\pi_r(t)}{2}$
 - $p_r(v) = \frac{1}{2}(\pi_r(v) \pi_f(v)) + \frac{\pi_f(s)}{2}$
 - Added terms are constant: functions still feasible and consistent.
 - When π_f and π_r are lower bounds, $p_f(t) = 0$ and $p_r(s) = 0$.
- p usually provides worse bounds than π :
 - still worth it in practice.

Bidirectional A* Search

- Bidirectional search needs two potential functions:
 - $-\pi_f(v)$: estimate on dist(v,t).
 - $-\pi_r(v)$: estimate on dist(s, v).
- Reduced cost of arc (v, w):
 - Forward: $\ell_f(v, w) = \ell(v, w) \pi_f(v) + \pi_f(w)$.
 - Reverse: $\ell_r(w,v) = \ell(v,w) \pi_r(w) + \pi_r(v)$.
 - $\ast\,$ the arc appears as (w,v) in the reverse graph.
- These values must be consistent:

$$\ell_f(v, w) = \ell_r(w, v)$$

$$\ell(v, w) - \pi_f(v) + \pi_f(w) = \ell(v, w) - \pi_r(w) + \pi_r(v)$$

$$\pi_f(w) + \pi_r(w) = \pi_f(v) + \pi_r(v)$$

• This must be true for all pairs (v, w), i.e., $(\pi_f + \pi_r) = \text{constant}$.

14

Bidirectional A* Search

- Standard bidirectional Dijkstra:
 - stop when $top_f + top_r \ge \mu$.
 - $* \operatorname{top}_{f}$: length of the path from s to top element of forward heap.
 - $* \operatorname{top}_r$: length of (reverse) path from t to top element of reverse heap.
 - * μ : best *s*-*t* path seen so far.
- Bidirectional A* search: same, but on the modified graph:
 - Let v_f and v_r be the top elements in each heap;
 - Length of path s-v_f is $d_f(v_f) + p_f(v_f) p_f(s) = top_f p_f(s)$.
 - Length of reverse path t- v_r is $d_r(v_r) + p_r(v_r) p_r(t) = top_r p_r(t)$.
 - Stopping criterion:

 $[top_f - p_f(s)] + [top_r - p_r(t)] \ge [\mu - p_f(s) + p_f(t)]$

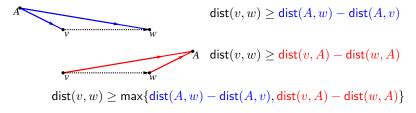
- Simplifying and using $p_f(t) = 0$:

 $\operatorname{top}_f + \operatorname{top}_r \ge \mu + p_r(t).$

Lower Bounds

• Preprocessing:

- select a constant number of landmarks (we use 16);
- $-\,$ for each landmark, precompute distance to and from every vertex.
- Lower bounds use the triangle inequality:



- A good landmark appears "before" $v \mbox{ or "after" } w.$
- More than one landmark: pick maximum (still feasible).

17

Experimental Results

• Northwest (1649045 vertices), 1000 random pairs:

	PREPROCESSING		QUERY		
METHOD	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra	_	28	518723	1 197 607	340.74
Landmarks	4	132	16 276	150 389	12.05

 \bullet Vertices scanned: ${\sim}1\%$ on average, ${\sim}10\%$ on bad cases.

Query with Landmarks

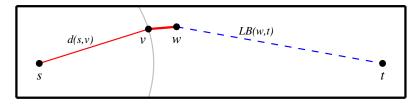
Landmark Selection

- Landmark selection happens in two stages.
- Preprocessing:
 - Pick a small number of landmarks (we use 16).
 - * more landmarks: better queries, more space.
 - Store on disk distances to and from each landmark.
- Query (s and t known):
 - using all available landmarks is expensive;
 - pick a small subset (2 to 6) that is good for the search.

Landmark Selection during Preprocessing Landmark Selection at Query Time • Ultimate goal: • Use only an active subset: - There should be a landmark "behind" every s-t pair. - prefer landmarks that give the best lower bound on dist(s, t). - Graphs are big, cannot evaluate this exactly: use heuristics. * All methods are quasi-linear. • We use dynamic selection: - start with two landmarks (best forward + best reverse); • Algorithms: - periodically check if a new landmark would help; - Simple methods: random, farthest, planar; - heaps rebuilt when landmarks added. - avoid: adds landmarks "behind" regions not currently covered; - maxcover: avoid + local search: • Performance in practice: * goal: maximize #arcs with zero reduced cost. - picks only \sim 3 landmarks; • Best in practice is maxcover: - fewer nodes visited than with any fixed number of landmarks. - queries \sim 3 times as fast as random; - preprocessing ~ 15 times slower. 2122**Reaches** • Let v be a vertex on the shortest path P between s and t. • Reach of v with respect to P: $\operatorname{reach}(v, P) = \min\{\operatorname{dist}(s, v), \operatorname{dist}(t, v)\}$ Part II: Reach • Reach of v with respect to the whole graph: $\operatorname{reach}(v) = \max_{P} \{\operatorname{reach}(v, P)\},\$ over all shortest paths P that contain v [Gutman'04]. • Intuition: vertices on highways have high reach; vertices on local roads have low reach.

Using Reaches

- Reaches can be used to prune the search during an s-t query.
- While scanning an edge (v, w):
 - If reach $(w) < \min\{d(s, v) + \ell(v, w), LB(w, t)\}$, then w can be pruned.



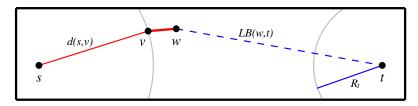
- How do we obtain lower bounds?
 - Explicitly: Euclidean distances (Gutman's suggestion), landmarks.

25

- Implicitly: make the search bidirectional.

Implicit Bounds: Bidirectional Search

- Let R_t be the radius of the reverse search:
 - R_t is the value of the top element in the reverse heap;
 - if w not labeled in the reverse direction, then $d(w,t) \ge R_t$.

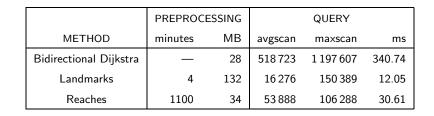


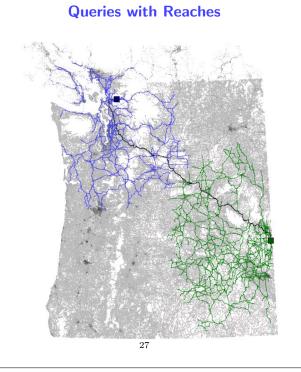
- Pruning test: $reach(w) < min\{d(s, v) + \ell(v, w), R_t\}$
 - for best results, balance the forward and reverse searches by radius.

26

Experimental Results

• Northwest (1649045 vertices), 1000 random pairs:





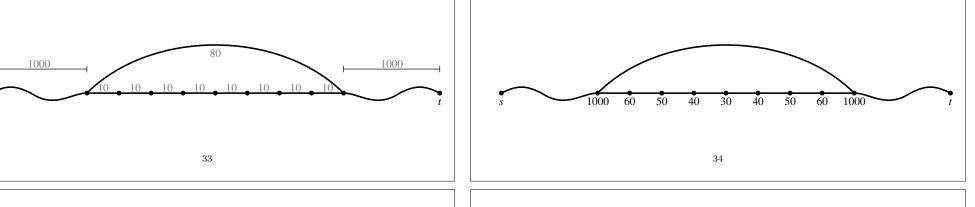
Computing Reaches Computing Reaches • Trivial algorithm: • Query still correct with upper bounds on reaches. - compute every s-t path; - determine reach of each vertex on each path. • We use iterative algorithm: 1. find vertices with reach at most ϵ ; - look only at partial shortest path trees (depth $\sim 2\epsilon$). • Implementation: 2. eliminate vertices with small reach; - Build shortest path tree T_r from each vertex r; - if no vertices remain, stop; - Determine reach of each vertex v within the tree: - otherwise, increase ϵ and start another iteration. $\operatorname{reach}(v, T_r) = \min\{\operatorname{depth}(v), \operatorname{height}(v)\}$ • Use penalties to account for vertices already eliminated: - Take maximum over all r. reaches no longer exact, but valid upper bounds • Runs in $\tilde{O}(nm)$ time: - overnight on Bay Area, years on North America. • Works well if many vertices are eliminated between iterations. 2930 **Shortcuts Shortcuts** • Consider a sequence of vertices of degree two on the path below: • Consider a sequence of vertices of degree two on the path below: - they all have high reach; 1000 1000 1000 1000 10 10 10 10 10 10 10 1030 1020 1030 1040 3132

Shortcuts

- Consider a sequence of vertices of degree two on the path below:
 - they all have high reach.
- Add a shortcut:
 - single edge bypassing a path (with same length).
 - $-\,$ assume ties are broken by taking path with fewer nodes.

Shortcuts

- $\bullet\,$ Consider a sequence of vertices of degree two on the path below:
 - they all have high reach.
- Add a shortcut:
 - single edge bypassing a path (with same length).
 - $-\,$ assume ties are broken by taking path with fewer nodes.

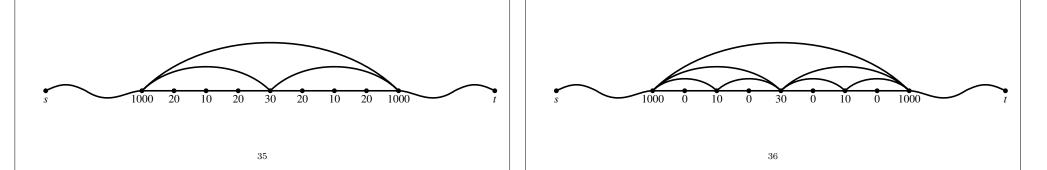


Shortcuts

- Consider a sequence of vertices of degree two on the path below:
 - they all have high reach.
- Add a shortcut:
 - single edge bypassing a path (with same length).
 - $-\,$ assume ties are broken by taking path with fewer nodes.
- More shortcuts can be added recursively.

Shortcuts

- Consider a sequence of vertices of degree two on the path below:
 - they all have high reach.
- Add a shortcut:
 - single edge bypassing a path (with same length).
 - $-\,$ assume ties are broken by taking path with fewer nodes.
- More shortcuts can be added recursively.



Shortcuts

- Adding shortcuts during preprocessing:
 - speeds up queries (pruning more effective);
 - speeds up preprocessing (graph shrinks faster);
 - requires slightly more space (graph has more arcs).
- Shortcuts bypass vertices of degree two:
 - some have degree two in the original graph;
 - $-\,$ some acquire degree two as other vertices are eliminated.
- Sanders and Schultes [ESA'05]:
 - similar idea for hierarchy-based algorithm.

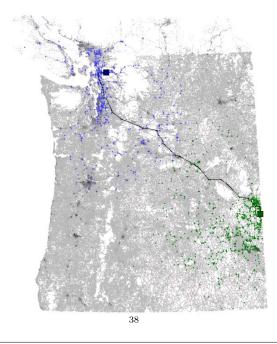
37

Experimental Results

• Northwest (1649045 vertices), 1000 random pairs:

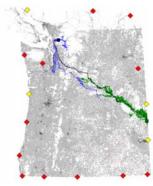
	PREPROCESSING				
METHOD	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra	_	28	518723	1 197 607	340.74
Landmarks	4	132	16 276	150 389	12.05
Reaches	1100	34	53 888	106 288	30.61
Reaches+Shortcuts	17	100	2 804	5 877	2.39

Reaches with Shortcuts

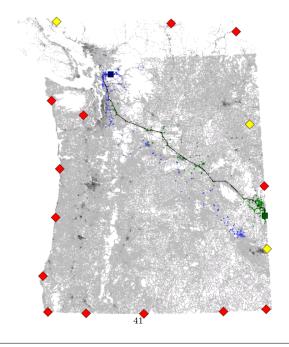


Reaches and Landmarks

- A* search with landmarks can use reaches:
 - A^* gives the search a sense of direction.
 - Reaches make the search sparser.
- Landmarks have dual purpose:
 - 1. guide the search;
 - 2. provide lower bounds for reach-based pruning.



Reaches and Landmarks (with Shortcuts)



Experimental Results

• Northwest (1649045 vertices), 1000 random pairs:

	PREPROCI	ESSING	QUERY		
METHOD	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra	—	28	518 723	1 197 607	340.74
Landmarks	4	132	16 276	150 389	12.05
Reaches	1100	34	53 888	106 288	30.61
Reaches+Shortcuts	17	100	2 804	5 877	2.39
Reaches+Shortcuts+Landmarks	21	204	367	1 513	0.73

42

Summary of Results

• North America (29883886 vertices), 1000 random pairs:

		PREPROCESS		QUERY		
	METHOD	hours	GB	avgscan	maxscan	ms
	Bidirectional Dijkstra	_	0.5	10 255 356	27 166 866	7 633.9
	Landmarks	1.6	2.3	250 381	3 584 377	393.4
	Reaches+Shortcuts	11.3	1.8	14 684	24 618	17.4
Reac	hes+Shortcuts+Landmarks	12.9	3.6	1 595	7 450	3.7

Future Directions

- Theory:
 - For which classes of graphs does each algorithm work?
 - How to find a good set of landmarks?
 - What is the best set of shortcuts for a given graph?
 - Is there a faster algorithm for computing exact reaches?
 - Is there a better algorithm for computing approximate reaches?
- Practice:
 - Reduce size of preprocessed data.
 - Make queries more cache-efficient.

References

- Goldberg, Harrelson, and Werneck (in preparation):
 - Goldberg and Harrelson (SODA'05):
 - $\ast~$ "ALT algorithm" (A* search + Landmarks + Triangle inequality).
 - Goldberg and Werneck (Alenex'05):
 - * improved preprocessing and queries;
 - \ast Pocket PC implementation.
- Goldberg, Kaplan, and Werneck (2005):
 - reach with shortcuts $+ A^*$ search.

http://www.cs.princeton.edu/~rwerneck/public.htm